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BTC Business Unit „Energy Products“ 

• Founded in January 2011 

• Bundles efforts in product development 

• Currently focus on products for the energy sector 

• EPM = Energy Process Management 

• Product range 

• Established products, e.g. Grid Control System PRINS 

• Products evolved from individual project, e.g. Wind Farm Center 

• New products, e.g. Advanced Meter Management 

 

• The products are customizable standard products  

• i.e. not sold off-the-shelf, but customized in large projects by BTC or 

partners 
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Characteristics of product development at BTC 

• Development mainly in C++/native and C#/.NET 

• Different products developed on a common basic platform of 

framework libraries, standard interfaces and reusable components 

• Delivery of modules as separate dynamic libraries 

• Component-based approach: Separation of interfaces and 

implementations into separate modules 

• Classification of interfaces into standard,  

export and import interfaces (Quasar) 

• Production systems are hard to update 

• availability requirements 

• complex engineering data that would need to be migrated 

• old versions may run for a long time (years) 

3 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Development model 
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Evolution scenarios in product development 

1. Identification of an implementation bug in a component or a 

framework library after it has been deployed to a customer 

 

Best case: 

• only one dynamic library must be replaced 

 

2. Request from product development team for a new feature in a basic 

platform component K2 that can only be handled by extending a 

standard interface S 

 

Best case: 

• S is extended without affecting existing clients and implementations 

• only K2 needs to implement the extended interface 
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Interface evolution 

Basic guideline: 

Compatibility should be guaranteed across releases. 

 

• Must maintain compatibility in minor and bug-fix revisions. 

• May break compatibility in major revisions. 

 

Questions: 

• When to release the first version or major revision of an interface? 

• What does compatibility mean? -> dimensions of compatibility 

• How to check compatibility? -> tool support 
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When to release the first version or major revision 

of an interface? 

• „as little as possible“ is not 

nothing 

• „as late as possible“ is not 

never 

• do not force clients to use non-

published APIs 

• Not strictly true for APIs 

• Compilers and processors are 

pretty non-adaptive fellows 
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When to release? – Some more thoughts 

In our product development setting: 

• We publish only very few interfaces to the outside. 

• So the „customers“ for most interfaces are close.  

• We have more than one chance to get it right, at least before software 

is deployed to an external customer. 

• Incompatible changes to an interface are possible, but still, 

significant costs are associated with them.  
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Dimensions of compatibility 

Syntactic vs. 
semantic 

compatibility 

Source vs. 
binary 

compatibility 

Strict vs. 
weak 

compatibility 

Client vs. 
provider 

compatibility 
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Definition of binary compatibility 

A change to a type is binary compatible with (equivalently, does not 

break binary compatibility with) pre-existing binaries 

• if the behaviour of pre-existing binaries (that use the type) is not 

affected. (= strict binary compatibility) 

Unfortunately, this excludes any “bug fix” and only allows strict 

extensions. 

 

• if pre-existing binaries that previously linked without error will 

continue to link without error. (= weak binary compatibility) 

(from Java Language Specification, section 13.2) 

This does not imply anything on behaviour, e.g. that the result is 

executable without error or at all. 
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Binary compatibility does not imply equivalence of 

binary & source replacement! 

Framework library: 

struct X : Object { 

  void Equals(const Object &other); //since V1.0 

 

}; 

 

Client: 

 

X a, b; 

a.Equals(b); 
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Binary compatibility does not imply equivalence of 

binary & source replacement! 

Framework library: 

struct X : Object { 

  void Equals(const Object &other); //since V1.0 

  void Equals(const X &other); //since V1.1 

}; 

 

Client: 

 

X a, b; 

a.Equals(b); 
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Overload resolution is 

performed at compile time 

(in Java, C#, C++) 

Overload resolution is 

performed at compile time 

(in Java, C#, C++) 

compile against V1.0, dynamic link against V1.0 or V1.1 

compile against V1.1, dynamic link against V1.1 

compile against V1.0, dynamic link against V1.0 



How can compatibility be checked? 

By tests. 

But tests are often 

… far from being complete. 

… wrong, rely on implementation details, even bugs. 

 

So this should be complemented (not replaced!) by other means. 
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Tool prototype: CSAPIDiff  

Identifies syntactic API changes and classifies their consequences for 

binary/source client/provider compatibility. 

Currently for C#/.NET assemblies (hence the name), but extensible. 

 

Main use cases: 

• BEFORE release: Monitor/verify compatibility of changes before new 

minor/bug-fix release 

• ON release: Support creation of release notes 

• AFTER release: Support adaptation of client/provider code (in case of 

incomplete/non-existent release notes) 
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Example: Spring.NET Spring.Core  

Breaking Changes 1.2.x->1.3.0 (1/2) 

1. within an ValidationGroup element (<v:group>,<v:exclusive>,..), nested validator 

elements now must occur after any <v:message>, <v:action> or <v:property> 

elements. […] 

2. XmlReaderContext constructor now requires an IObjectDefinitionFactory to be 

specified. Thus XmlReaderContext.ObjectDefinitionFactory is read only now.  

3. Changes to the Apache NMS API, which was not yet a public release when included 

in Spring 1.2.0 made breaking API changes. On NmsTemlate,  

1) The property 'byte Priority' was changed to 'MsgPriority Priority'  

2) The property 'bool Persistent' is no longer part of the NMS API but is still 

supported in a backward compatible manner by Spring by translation to standard 

MsgDeliveryMode enumeration values of Persistent and NonPersistent. A new 

property MsgDelivery has been added. The class, CachedMessageProducer, which 

is unlikely to be use by end users, was directly upgraded to the latest API without 

any backwards compatibility support.  
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Example: Spring.NET Spring.Core 

Breaking Changes 1.2.x->1.3.0 (2/2) 

4. AbstractApplicationContext.CaseSensitive renamed to 

AbstractApplicationContext.IsCaseSensitive  

5. Spring.Validation: Base class BaseValidator changed to BaseSimpleValidator for 

single validators as compared to group validators which now commonly derive from 

BaseGroupValidator instead of ValidatorGroup  

6. IVariableSource implementations now must also implement 

CanResolveVariable(string variableName) and may throw exceptions in 

ResolveVariable() in case the variable cannot resolved by this particular variable 

source. In order to distinguish between an existing variable having a null value and 

a non-existing variable, variable sources need to be changed to this new contract.  

7. a) Signature of CollectionUtils.Contains(ICollection collection, object element) 

changed to CollectionUtils.Contains(IEnumerable collection, object element)  

b) returns 'null' in case of collection==null instead of throwing an exception  

8. dropped Spring.Expressions.DateLiteralNode 

 

(from http://www.springframework.net/docs/1.3.0/BreakingChanges.txt) 
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Only relevant to 

providers. 

Only relevant to 

providers. 

Not yet checked Not yet checked 

Only relevant to 

providers; exceptions 

not declared in .NET 

Only relevant to 

providers; exceptions 

not declared in .NET 

b) behavioural 

change 

b) behavioural 

change 



Example CSAPIDiff output 
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What software developers should know by heart 

• The SOLID principles: 

• Single responsibility principle 

• Open/closed principle 

• Liskov substitution principle 

• Interface segregation principle 

• Dependency inversion principle 

• Design-by-contract 

• Encapsulation of implementation details 

• Run-time vs. compile-time polymorphism 

• Refactoring vs. changing published interfaces 
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Research challenges / technical 

• Since syntactic compatibility can be automatically checked: 

 

Do semantic API changes coincide with syntactic API changes? 

Under what circumstances is this not the case? 

Can the relationship be characterized in more detail? 

• How can coexistence of multiple module versions within an 

application be exploited best? 

 

Many technical questions can be and have been explored in practise, 

but we need facts on the economic consequences. 
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Research challenges / economic 

Under incomplete knowledge & uncertainty, improve on gut-feelings and 

opinion by providing hard data: 

• Which way of extension is the most cost-efficient? 

• When should standard interfaces be used, when should one stick 

with export interfaces? 

• When to invest in extensibility? 

• When is breaking compatibility more economic than maintaining 

compatibility? 

This may build on work on “The structure and value of modularity in 

software design” (Sullivan/Griswold/Cai/Hallen) 

 

General: Theory that reliably allows the prediction of the impact of any 

design decision on maintenance costs. 
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A final note: C++ vs. Java/C# 

The situation is more complex in C++, and tool support is much weaker. 

But: „The world is built on C++“ (Herb Sutter) 

 

Additional challenges in C++ make binary compatiblity hard: 

• Compiler-dependent ABI 

• Prevalence of in-header code (inline methods, template methods) and 

compile-time inlining 

• Compile-time fixation of memory layout 

• Optimization of virtual method calls into non-virtual method calls 

• Implicit type conversions 

• … 

 

Good news: no reflection in C++ 
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Sources on compatibility in practice 

• Focus on Java: http://wiki.eclipse.org/index.php/Evolving_Java-

based_APIs 

• Focus on C++: 

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B

%2B 
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Thank you very much for your attention. 

 BTC Business Technology Consulting AG 

Escherweg 5 

26121 Oldenburg 

Ph. 0441 / 36 12-0 
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