
Evolution of reusable interfaces in 

product development 

March 1st, 2013 

Dr. Simon Giesecke, Dr. Niels Streekmann 



BTC Business Unit „Energy Products“ 

• Founded in January 2011 

• Bundles efforts in product development 

• Currently focus on products for the energy sector 

• EPM = Energy Process Management 

• Product range 

• Established products, e.g. Grid Control System PRINS 

• Products evolved from individual project, e.g. Wind Farm Center 

• New products, e.g. Advanced Meter Management 

 

• The products are customizable standard products  

• i.e. not sold off-the-shelf, but customized in large projects by BTC or 

partners 

2 Titel, Verfasser, Datum 



Characteristics of product development at BTC 

• Development mainly in C++/native and C#/.NET 

• Different products developed on a common basic platform of 

framework libraries, standard interfaces and reusable components 

• Delivery of modules as separate dynamic libraries 

• Component-based approach: Separation of interfaces and 

implementations into separate modules 

• Classification of interfaces into standard,  

export and import interfaces (Quasar) 

• Production systems are hard to update 

• availability requirements 

• complex engineering data that would need to be migrated 

• old versions may run for a long time (years) 

3 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Development model 

4 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Evolution scenarios in product development 

1. Identification of an implementation bug in a component or a 

framework library after it has been deployed to a customer 

 

Best case: 

• only one dynamic library must be replaced 

 

2. Request from product development team for a new feature in a basic 

platform component K2 that can only be handled by extending a 

standard interface S 

 

Best case: 

• S is extended without affecting existing clients and implementations 

• only K2 needs to implement the extended interface 

5 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Interface evolution 

Basic guideline: 

Compatibility should be guaranteed across releases. 

 

• Must maintain compatibility in minor and bug-fix revisions. 

• May break compatibility in major revisions. 

 

Questions: 

• When to release the first version or major revision of an interface? 

• What does compatibility mean? -> dimensions of compatibility 

• How to check compatibility? -> tool support 

6 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



When to release the first version or major revision 

of an interface? 

• „as little as possible“ is not 

nothing 

• „as late as possible“ is not 

never 

• do not force clients to use non-

published APIs 

• Not strictly true for APIs 

• Compilers and processors are 

pretty non-adaptive fellows 

 

7 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 

„Release early, 

release often. 

And listen to your 

customers“ 

(Eric S. 

Raymond) 

„Release early, 

release often. 

And listen to your 

customers“ 

(Eric S. 

Raymond) 

„Publish as little 

as possible as 

late as possible“ 

(Martin Fowler) 

„Publish as little 

as possible as 

late as possible“ 

(Martin Fowler) 

„You have 

one chance 

to get it right“ 

(Joshua 

Bloch) 

„You have 

one chance 

to get it right“ 

(Joshua 

Bloch) 

PRE-release early, PRE-release often.  

(And listen to your customers.) 

Ensure that PRE-releases never go into production. 

PRE-release early, PRE-release often.  

(And listen to your customers.) 

Ensure that PRE-releases never go into production. 



When to release? – Some more thoughts 

In our product development setting: 

• We publish only very few interfaces to the outside. 

• So the „customers“ for most interfaces are close.  

• We have more than one chance to get it right, at least before software 

is deployed to an external customer. 

• Incompatible changes to an interface are possible, but still, 

significant costs are associated with them.  

8 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Dimensions of compatibility 

Syntactic vs. 
semantic 

compatibility 

Source vs. 
binary 

compatibility 

Strict vs. 
weak 

compatibility 

Client vs. 
provider 

compatibility 

9 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Definition of binary compatibility 

A change to a type is binary compatible with (equivalently, does not 

break binary compatibility with) pre-existing binaries 

• if the behaviour of pre-existing binaries (that use the type) is not 

affected. (= strict binary compatibility) 

Unfortunately, this excludes any “bug fix” and only allows strict 

extensions. 

 

• if pre-existing binaries that previously linked without error will 

continue to link without error. (= weak binary compatibility) 

(from Java Language Specification, section 13.2) 

This does not imply anything on behaviour, e.g. that the result is 

executable without error or at all. 

 

10 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Binary compatibility does not imply equivalence of 

binary & source replacement! 

Framework library: 

struct X : Object { 

  void Equals(const Object &other); //since V1.0 

 

}; 

 

Client: 

 

X a, b; 

a.Equals(b); 

11 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 

compile against V1.0, dynamic link against V1.0 



Binary compatibility does not imply equivalence of 

binary & source replacement! 

Framework library: 

struct X : Object { 

  void Equals(const Object &other); //since V1.0 

  void Equals(const X &other); //since V1.1 

}; 

 

Client: 

 

X a, b; 

a.Equals(b); 

12 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 

Overload resolution is 

performed at compile time 

(in Java, C#, C++) 

Overload resolution is 

performed at compile time 

(in Java, C#, C++) 

compile against V1.0, dynamic link against V1.0 or V1.1 

compile against V1.1, dynamic link against V1.1 

compile against V1.0, dynamic link against V1.0 



How can compatibility be checked? 

By tests. 

But tests are often 

… far from being complete. 

… wrong, rely on implementation details, even bugs. 

 

So this should be complemented (not replaced!) by other means. 

13 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Tool prototype: CSAPIDiff  

Identifies syntactic API changes and classifies their consequences for 

binary/source client/provider compatibility. 

Currently for C#/.NET assemblies (hence the name), but extensible. 

 

Main use cases: 

• BEFORE release: Monitor/verify compatibility of changes before new 

minor/bug-fix release 

• ON release: Support creation of release notes 

• AFTER release: Support adaptation of client/provider code (in case of 

incomplete/non-existent release notes) 

 

14 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Example: Spring.NET Spring.Core  

Breaking Changes 1.2.x->1.3.0 (1/2) 

1. within an ValidationGroup element (<v:group>,<v:exclusive>,..), nested validator 

elements now must occur after any <v:message>, <v:action> or <v:property> 

elements. […] 

2. XmlReaderContext constructor now requires an IObjectDefinitionFactory to be 

specified. Thus XmlReaderContext.ObjectDefinitionFactory is read only now.  

3. Changes to the Apache NMS API, which was not yet a public release when included 

in Spring 1.2.0 made breaking API changes. On NmsTemlate,  

1) The property 'byte Priority' was changed to 'MsgPriority Priority'  

2) The property 'bool Persistent' is no longer part of the NMS API but is still 

supported in a backward compatible manner by Spring by translation to standard 

MsgDeliveryMode enumeration values of Persistent and NonPersistent. A new 

property MsgDelivery has been added. The class, CachedMessageProducer, which 

is unlikely to be use by end users, was directly upgraded to the latest API without 

any backwards compatibility support.  

15 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 

This is not an API, 

but Data Format 

change. 

This is not an API, 

but Data Format 

change. 

This is not actually in 

Spring.Core.dll, but 

in Spring.Nms.dll 

This is not actually in 

Spring.Core.dll, but 

in Spring.Nms.dll 



Example: Spring.NET Spring.Core 

Breaking Changes 1.2.x->1.3.0 (2/2) 

4. AbstractApplicationContext.CaseSensitive renamed to 

AbstractApplicationContext.IsCaseSensitive  

5. Spring.Validation: Base class BaseValidator changed to BaseSimpleValidator for 

single validators as compared to group validators which now commonly derive from 

BaseGroupValidator instead of ValidatorGroup  

6. IVariableSource implementations now must also implement 

CanResolveVariable(string variableName) and may throw exceptions in 

ResolveVariable() in case the variable cannot resolved by this particular variable 

source. In order to distinguish between an existing variable having a null value and 

a non-existing variable, variable sources need to be changed to this new contract.  

7. a) Signature of CollectionUtils.Contains(ICollection collection, object element) 

changed to CollectionUtils.Contains(IEnumerable collection, object element)  

b) returns 'null' in case of collection==null instead of throwing an exception  

8. dropped Spring.Expressions.DateLiteralNode 

 

(from http://www.springframework.net/docs/1.3.0/BreakingChanges.txt) 

16 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 

Only relevant to 

providers. 

Only relevant to 

providers. 

Not yet checked Not yet checked 

Only relevant to 

providers; exceptions 

not declared in .NET 

Only relevant to 

providers; exceptions 

not declared in .NET 

b) behavioural 

change 

b) behavioural 

change 



Example CSAPIDiff output 

17 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



What software developers should know by heart 

• The SOLID principles: 

• Single responsibility principle 

• Open/closed principle 

• Liskov substitution principle 

• Interface segregation principle 

• Dependency inversion principle 

• Design-by-contract 

• Encapsulation of implementation details 

• Run-time vs. compile-time polymorphism 

• Refactoring vs. changing published interfaces 

18 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Research challenges / technical 

• Since syntactic compatibility can be automatically checked: 

 

Do semantic API changes coincide with syntactic API changes? 

Under what circumstances is this not the case? 

Can the relationship be characterized in more detail? 

• How can coexistence of multiple module versions within an 

application be exploited best? 

 

Many technical questions can be and have been explored in practise, 

but we need facts on the economic consequences. 

 

 

 

19 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Research challenges / economic 

Under incomplete knowledge & uncertainty, improve on gut-feelings and 

opinion by providing hard data: 

• Which way of extension is the most cost-efficient? 

• When should standard interfaces be used, when should one stick 

with export interfaces? 

• When to invest in extensibility? 

• When is breaking compatibility more economic than maintaining 

compatibility? 

This may build on work on “The structure and value of modularity in 

software design” (Sullivan/Griswold/Cai/Hallen) 

 

General: Theory that reliably allows the prediction of the impact of any 

design decision on maintenance costs. 

20 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



A final note: C++ vs. Java/C# 

The situation is more complex in C++, and tool support is much weaker. 

But: „The world is built on C++“ (Herb Sutter) 

 

Additional challenges in C++ make binary compatiblity hard: 

• Compiler-dependent ABI 

• Prevalence of in-header code (inline methods, template methods) and 

compile-time inlining 

• Compile-time fixation of memory layout 

• Optimization of virtual method calls into non-virtual method calls 

• Implicit type conversions 

• … 

 

Good news: no reflection in C++ 

21 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Sources on compatibility in practice 

• Focus on Java: http://wiki.eclipse.org/index.php/Evolving_Java-

based_APIs 

• Focus on C++: 

http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B

%2B 

22 DFF 2013, Dr. Simon Giesecke, 2013-03-01, Aachen 



Headquarter: 

 

Escherweg 5 

26121 Oldenburg 

Fon: + 49 441 3612-0 

Fax: + 49 441 3612-3999 

E-Mail: office-ol@btc-ag.com 

www.btc-ag.com 

Kurfürstendamm 33 

10719 Berlin 

Fon: + 49 30 88096-5 

Fax: + 49 30 88096-777 

E-Mail: office-b@btc-ag.com 

 

Weser Tower 

Am Weser-Terminal 1 

28217 Bremen 

Fon: +49 421 33039-0 

Fax: +49 421 33039-399 

E-Mail: office-hb@btc-ag.com  

 

Bartholomäusweg 32 

33334 Gütersloh 

Fon: +49 5241 9463-0 

Fax: +49 5241 9463-55 

E-Mail: office-gt@btc-ag.com 

 

Burchardstraße 24 

20095 Hamburg 

Fon: +49 40 210098-0 

Fax: +49 40 210098-76 

E-Mail: office-hh@btc-ag.com 

 

Klostergasse 5 

04109 Leipzig 

Fon: +49 341 350558-0 

Fax: +49 341 350558-59 

E-Mail: office-l@btc-ag.com 

Çayiryolu 1, Partaş Center Kat: 11-12 

Içerenköy, 34752 Istanbul 

Türkei  

Fon: +90 (216) 5754590 

Fax: +90 (216) 5754595 

E-Mail: office-ist@btc-ag.com 

 

ul. Małe Garbary 9 
61-756 Poznań 

Polen 

Fon: +48 (0) 61 8560970 

Fax: +48 (0) 61 8501870 

E-Mail: biuro-poz@btc-ag.com 

 

Hasebe Build.11F,  

4-22-3 Sendagi, Bunkyo-Ku, 

113-0022 Tokyo 

Japan 

Fon: +81 (3) 5832 7020 

Fax: +81 (3) 5832 7021 

Email: Info.OSCJapan@btc-es.de 

 

Bäulerstraße 20 

CH-8152 Glattbrugg 

Schweiz 

Fon: +41 (0) 44 874 3000 

Fax: +41 (0) 44 874 3010 

E-Mail: office-zh@btc-ag.com 

Wilh.-Th.-Römheld-Str. 24  

55130 Mainz 

Fon: + 49 6131 88087-0 

Fax: + 49 6131 88087-99 

E-Mail: office-mz@btc-ag.com 

 

Türkenstraße 55  

80799 München 

Fon: +49 89 3603539-0 

Fax: +49 89 3603539-59 

E-Mail: office-m@btc-ag.com 

 

An der Alten Ziegelei 1 

48157 Münster 

Fon: +49 251 14132-0 

Fax: +49 251 14132-11 

E-Mail: office-ms@btc-ag.com 

 

Konrad-Zuse-Straße 3 

74172 Neckarsulm 

Fon: +49 (7132 380-0 

Fax: +49 7132 380-29 

E-Mail: office-nsu@btc-ag.com 

 

BTC AG Offices 

23 Titel, Verfasser, Datum 



Thank you very much for your attention. 

 BTC Business Technology Consulting AG 

Escherweg 5 

26121 Oldenburg 

Ph. 0441 / 36 12-0 

www.btc-ag.com 

 

simon.giesecke@btc-ag.com  


